Skip to main content

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

How C.V. Raman’s Nobel-Winning Discovery is Helping Hunt for Life on Mars

How C.V. Raman’s Nobel-Winning Discovery is Helping Hunt for Life on Mars

From Earth to the Red Planet: The Role of Raman Spectroscopy in Space Exploration


Introduction

Sir Chandrasekhara Venkata Raman, an Indian physicist, won the Nobel Prize in Physics in 1930 for his groundbreaking discovery of the Raman Effect—a phenomenon that explains how light interacts with molecules, revealing their composition. While this discovery revolutionized optical physics, its impact extends far beyond Earth's laboratories. Today, Raman spectroscopy is playing a crucial role in the search for extraterrestrial life, especially on Mars.

NASA’s Perseverance rover and the upcoming ExoMars mission are using Raman spectrometers to analyze Martian rocks, searching for signs of past or present life. But how does a discovery made almost a century ago help scientists hunt for life on another planet? Let’s dive deep into the fascinating connection.

What is the Raman Effect?

  • Discovered in 1928 by C.V. Raman, this effect describes how light scatters when it interacts with molecules.
  • A small fraction of scattered light changes its wavelength based on the vibrational energy of the molecules, providing a unique chemical fingerprint of the material.
  • This principle became the foundation of Raman Spectroscopy, a non-destructive technique used to identify substances based on their molecular composition.

Why is Raman Spectroscopy Ideal for Mars Exploration?

  • Raman Spectroscopy is one of the most powerful tools for space exploration because:
  • It can detect organic molecules that might indicate past or present life.
  • It works without damaging samples, making it ideal for space missions.
  • It can operate in harsh environments like Mars without needing liquid or vacuum conditions.
  • It helps in mineralogical analysis, allowing scientists to study the planet’s history.


How is Raman Spectroscopy Used on Mars?

Two major space missions have used or plan to use Raman Spectroscopy for Mars exploration:

NASA's Perseverance Rover (2021 - Present)

  • The SHERLOC Instrument (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals) is mounted on the rover’s robotic arm.
  • SHERLOC uses deep ultraviolet Raman spectroscopy to detect organic compounds and potential biosignatures in Martian rocks.
  • It helps determine whether Mars had habitable conditions in the past.

ExoMars Rosalind Franklin Rover (2028 - Future Mission)

  • First rover equipped with a full Raman spectrometer.
  • Unlike Perseverance, it will drill up to 2 meters below the Martian surface to find organic molecules protected from radiation.
  • It aims to analyze hydrated minerals, which could reveal the presence of ancient Martian water.

The Hunt for Life: What Are Scientists Looking For?

Using Raman Spectroscopy, scientists are searching for:

Organic Molecules – These are the building blocks of life, such as amino acids and lipids.
Biosignatures – Chemical or molecular patterns that could suggest microbial life once existed.
Water-related Minerals – Finding water-altered minerals like clays, carbonates, and sulfates indicates Mars once had liquid water.
Geochemical Clues – Understanding the planet’s chemical evolution to predict if life could have survived.


Could Raman Spectroscopy Prove Life Existed on Mars?

  • While no direct proof of extraterrestrial life has been found yet, Raman Spectroscopy has already made significant discoveries.
  • In 2022, Perseverance detected carbon-based molecules in Jezero Crater—an ancient lakebed believed to have held water billions of years ago.
  • If ExoMars confirms biosignatures in subsurface samples, it could be the strongest evidence yet of ancient microbial life on Mars.

The Future of Raman Spectroscopy in Space Exploration

Beyond Mars, Raman Spectroscopy could be used to explore:
Jupiter’s moon Europa – Suspected to have a vast subsurface ocean.
Saturn’s moon Enceladus – Geysers spewing organic material could be analyzed.
Asteroids & Exoplanets – Future missions may use Raman Spectroscopy to study distant worlds.


Conclusion: From Nobel Prize to Space Exploration

C.V. Raman’s discovery, once an academic breakthrough, has become a cornerstone of interplanetary exploration. Today, as scientists scan the Martian surface for traces of life, they owe much of their progress to the pioneering work of this legendary physicist.

From Earth’s labs to the surface of Mars, the Raman Effect continues to shape the future of space science, proving that great discoveries truly have no limits.

Popular posts from this blog

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

IN-SPACe CANSAT & Model Rocketry India Student Competition 2024–25: A Giant Leap for Student Innovation

In a remarkable step towards strengthening India’s STEM education framework, the Astronautical Society of India (ASI), in collaboration with the Indian Space Research Organisation (ISRO) and the Indian National Space Promotion and Authorization Center (IN-SPACe), has launched the IN-SPACe CANSAT and Model Rocketry India Student Competition 2024–25 . This unique competition is crafted for undergraduate students across India, providing them with an opportunity to engage in experiential learning through the design, fabrication, and launch of CANSATs—can-sized satellites—using model rocketry platforms. The event held on June 14, 2025 , in Tamkuhi Raj, Kushinagar, Uttar Pradesh , was not a full-fledged rocket launch carrying an actual payload. Instead, it served as a critical site and systems validation test in preparation for the upcoming national student competition. This test focused on ensuring the readiness of launch site infrastructure, safety protocols, telemetry systems, and track...

A Deep Dive into ISRO’s Gaganyaan Mission

As the Indian Space Research Organisation (ISRO) advances steadily towards launching its maiden human spaceflight mission — Gaganyaan — the emphasis on spaceflight safety has never been more crucial. India is on the brink of joining an elite group of nations capable of sending humans to space, and ISRO is leaving no stone unturned to ensure that every stage of the mission, from liftoff to landing, adheres to global safety standards. Gaganyaan is poised to become a landmark achievement in India’s space exploration journey. It aims to send three astronauts into low Earth orbit (LEO) for up to seven days. While this initial mission is not intended to dock with any space station, the selected crew is being familiarized with docking procedures , a forward-thinking move that prepares them for potential future missions involving orbital rendezvous and space station docking . Ensuring astronaut safety is a complex, multilayered process involving extensive planning, rigorous testing, and ...

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations Introduction to Climate Risk Index (CRI) The Climate Risk Index (CRI) 2025 is a globally recognized measure that ranks countries based on their vulnerability to extreme weather events over a defined period. This index assesses the impact of climate-related disasters such as floods, storms, heatwaves, and droughts. It serves as a critical indicator of how climate change affects human lives and economies across different regions. The CRI 2025 , published by German-watch , highlights India's growing vulnerability to climate-related disasters. India has been ranked as the 6th most affected country during 1993-2022 , highlighting the increasing frequency and severity of extreme weather events. Key Findings of CRI 2025 India's Climate Vulnerability India faced over 400 extreme weather events between 1993 and 2022 . The economic losses due to these disasters exceeded USD 180 billion . The death toll from climate-r...

Giant Plasma Tides Beneath the Sun: Indian Scientists Unlock Solar Secrets That Could Shape Space Weather

In a groundbreaking discovery that may significantly alter our understanding of solar dynamics and space weather, an international team of solar physicists, led by the Indian Institute of Astrophysics (IIA), has mapped giant tides of plasma flowing beneath the surface of the sun. These hidden plasma currents, located in a zone known as the near-surface shear layer (NSSL), have been shown to shift with the sun’s magnetic activity and could be a critical piece in solving the complex puzzle of space weather phenomena that affect life on Earth. The research, published in the prestigious Astrophysical Journal Letters , was carried out in collaboration with experts from Stanford University and the U.S. National Solar Observatory (NSO). The findings not only uncover previously invisible solar plasma flows , but also link them with magnetic field changes and solar cycles, offering new insight into the sun’s mysterious behavior. The Hidden Engine Beneath the Sun: What is the Near-Surface S...

NASA Veteran Mike Massimino Engages with PM SHRI Kendriya Vidyalaya Students

NASA Veteran Mike Massimino Engages with PM SHRI Kendriya Vidyalaya Students On February 28, 2025, former NASA astronaut Mike Massimino visited the PM SHRI Kendriya Vidyalaya in New Delhi, offering students a unique opportunity to interact with an experienced space explorer. Massimino's visit aimed to inspire and educate the young minds about space exploration, sharing his personal experiences and insights. Interactive Session with Students Personal Journey : Massimino recounted his path to becoming an astronaut, highlighting how a film about seven astronauts ignited his passion for space exploration. He emphasized the importance of perseverance and dedication in achieving one's dreams. Q&A Session : Students eagerly posed questions about various aspects of space missions, including the types of food consumed in space and daily routines aboard a spacecraft. Massimino provided detailed responses, offering a glimpse into the life of an astronaut. Zero Gravity Experiences Adap...