Skip to main content

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

Activated Carbon: The Versatile Adsorbent Facing Market Challenges

Activated Carbon: The Versatile Adsorbent Facing Market Challenges

Introduction

Activated carbon, also known as activated charcoal or active carbon, is a highly porous form of carbon that is widely used in purification, filtration, and various industrial applications. With its remarkable adsorption properties, activated carbon plays a crucial role in water treatment, air purification, food processing, pharmaceuticals, and precious metal recovery. However, the industry is currently facing significant challenges, including rising production costs, reduced availability of raw materials like coconut shells, and increasing global demand for gold recovery carbon. This article delves into the properties, applications, production process, and current market challenges of activated carbon.


What is Activated Carbon?

Activated carbon is a processed form of carbon characterized by its extensive surface area and porous structure, which enhances its ability to adsorb molecules from gases and liquids. It is produced from various carbon-rich materials, such as coconut shells, wood, coal, and peat, through thermal or chemical activation.

Key Properties of Activated Carbon:

  • High Surface Area: Typically ranges from 500 to 1500 m²/g, allowing for efficient adsorption.
  • Porous Structure: Includes micro, meso, and macro pores, which facilitate the trapping of pollutants.
  • High Surface Reactivity: Enables adsorption of a variety of organic and inorganic compounds.
  • Thermal and Chemical Stability: Ensures effectiveness in high-temperature and high-pH environments.

Production of Activated Carbon

Activated carbon is primarily derived from carbonaceous materials through two key methods:

  1. Physical Activation: Involves carbonization at high temperatures (600–900°C) in an inert atmosphere, followed by activation with steam or carbon dioxide to develop the porous structure.
  2. Chemical Activation: Uses chemical agents like phosphoric acid (H₃PO₄) or zinc chloride (ZnCl₂) to create porosity at lower temperatures.

The most commonly used raw material for high-quality activated carbon is coconut shell, followed by wood, coal, and other biomass sources.


Applications of Activated Carbon

The versatility of activated carbon extends across various industries, making it an essential material in numerous applications.

1. Water Treatment and Filtration

  • Removal of chlorine, organic contaminants, and heavy metals.
  • Used in municipal water treatment plants, household filters, and industrial wastewater treatment.

2. Air and Gas Purification

  • Adsorption of volatile organic compounds (VOCs), odors, and toxic gases.
  • Utilized in air purifiers, gas masks, and industrial emission control systems.

3. Food and Beverage Industry

  • Used for decolorization and purification of sugar, beverages, and edible oils.
  • Removes undesirable flavors and impurities.

4. Pharmaceutical and Medical Applications

  • Utilized in poisoning treatment (activated charcoal tablets).
  • Used in drug delivery systems and purification of pharmaceutical products.

5. Gold Recovery and Precious Metal Refining

  • Plays a critical role in extracting gold through the Carbon-in-Pulp (CIP) and Carbon-in-Leach (CIL) processes.
  • Increasing global demand for gold has significantly raised the consumption of activated carbon in the mining industry.

6. Cosmetics and Personal Care

  • Used in facial masks, toothpaste, and skincare products for detoxification and deep cleansing.

7. Automotive and Industrial Uses

  • Used in catalytic converters to reduce emissions.
  • Plays a role in fuel vapor recovery systems in automobiles.

Market Challenges and Industry Struggles

Despite its widespread applications, the activated carbon industry is facing several hurdles that threaten its sustainability and profitability.

1. Rising Manufacturing Costs

  • The cost of raw materials, energy, and labor has been steadily increasing, impacting the overall production cost of activated carbon.
  • Environmental regulations on emissions and waste disposal have added additional compliance costs.

2. Shrinking Availability of Coconut Shells

  • Coconut shells are the preferred raw material for producing high-quality activated carbon, but their availability is declining due to increasing demand in other industries, such as biofuel production.
  • Climate change and reduced coconut yield have also contributed to the shortage.

3. Increasing Demand for Gold Recovery Carbon

  • The mining industry has been consuming large quantities of activated carbon for gold extraction, leading to supply constraints for other applications.
  • This demand surge has resulted in higher prices and reduced availability for water and air treatment sectors.

4. Competition from Alternative Materials

  • Emerging filtration and adsorption technologies, such as synthetic resins and nanomaterials, are posing competition to traditional activated carbon.
  • These alternatives offer specific advantages, such as higher selectivity and longer service life, challenging the market position of activated carbon.

5. Regulatory and Environmental Concerns

  • Stricter environmental regulations regarding carbon emissions and waste disposal have imposed new challenges on manufacturers.
  • The industry is under pressure to adopt sustainable and eco-friendly production methods.

Future Outlook and Innovations

To overcome these challenges, the activated carbon industry is actively exploring innovative solutions and technological advancements.

1. Development of Sustainable Raw Materials

  • Researchers are investigating alternative sources such as bamboo, fruit shells, and agricultural waste to reduce dependency on coconut shells and coal.
  • Recycling and regeneration techniques are being improved to enhance the reusability of spent activated carbon.

2. Advancements in Activation Technologies

  • Microwave-assisted activation and bio-based activation processes are being explored to reduce energy consumption and environmental impact.
  • Nanotechnology is being integrated to enhance adsorption capacity and efficiency.

3. Customized Activated Carbon for Specific Applications

  • The development of tailored activated carbon products for high-performance applications, such as nuclear waste treatment and supercapacitors, is gaining traction.
  • Functionalized activated carbons with improved selectivity and durability are being designed for advanced purification systems.

4. Strategic Market Diversification

  • Companies are expanding their presence in emerging markets, including Asia, Africa, and Latin America, where industrial and environmental applications are growing rapidly.
  • Collaborative research efforts between academia and industry are driving innovation and product development.

Conclusion

Activated carbon remains an indispensable material across numerous industries, but the sector is facing significant market pressures. The rising production costs, raw material scarcity, and increasing demand for gold recovery carbon are creating hurdles for manufacturers. However, with strategic innovations in sustainable raw materials, advanced activation techniques, and tailored product development, the activated carbon industry can overcome these challenges and continue to thrive.

As the global focus on environmental sustainability and pollution control intensifies, activated carbon will remain at the forefront of purification and filtration solutions. The industry’s ability to adapt and innovate will determine its future success in a rapidly evolving marketplace.

Popular posts from this blog

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

IN-SPACe CANSAT & Model Rocketry India Student Competition 2024–25: A Giant Leap for Student Innovation

In a remarkable step towards strengthening India’s STEM education framework, the Astronautical Society of India (ASI), in collaboration with the Indian Space Research Organisation (ISRO) and the Indian National Space Promotion and Authorization Center (IN-SPACe), has launched the IN-SPACe CANSAT and Model Rocketry India Student Competition 2024–25 . This unique competition is crafted for undergraduate students across India, providing them with an opportunity to engage in experiential learning through the design, fabrication, and launch of CANSATs—can-sized satellites—using model rocketry platforms. The event held on June 14, 2025 , in Tamkuhi Raj, Kushinagar, Uttar Pradesh , was not a full-fledged rocket launch carrying an actual payload. Instead, it served as a critical site and systems validation test in preparation for the upcoming national student competition. This test focused on ensuring the readiness of launch site infrastructure, safety protocols, telemetry systems, and track...

A Deep Dive into ISRO’s Gaganyaan Mission

As the Indian Space Research Organisation (ISRO) advances steadily towards launching its maiden human spaceflight mission — Gaganyaan — the emphasis on spaceflight safety has never been more crucial. India is on the brink of joining an elite group of nations capable of sending humans to space, and ISRO is leaving no stone unturned to ensure that every stage of the mission, from liftoff to landing, adheres to global safety standards. Gaganyaan is poised to become a landmark achievement in India’s space exploration journey. It aims to send three astronauts into low Earth orbit (LEO) for up to seven days. While this initial mission is not intended to dock with any space station, the selected crew is being familiarized with docking procedures , a forward-thinking move that prepares them for potential future missions involving orbital rendezvous and space station docking . Ensuring astronaut safety is a complex, multilayered process involving extensive planning, rigorous testing, and ...

India’s Electric Hansa (E-HANSA): Pioneering Green Aviation with Indigenous Technology

India has embarked on a groundbreaking journey to revolutionize its aviation training sector with the development of the Electric Hansa (E-HANSA) —a next-generation, two-seater electric trainer aircraft developed indigenously by the Council of Scientific & Industrial Research – National Aerospace Laboratories (CSIR-NAL) in Bengaluru. Announced by Union Minister Dr. Jitendra Singh during a high-level monthly review meeting, this initiative places India firmly on the global map for sustainable and green aviation technologies . E-HANSA: A Leap Toward Green Aviation The E-HANSA aircraft is India's foray into electric aircraft development , aligning closely with national and global goals for carbon neutrality and clean energy adoption . As the world shifts towards climate-friendly technologies, the aviation industry—a traditionally high-emission sector—is witnessing a paradigm shift. The E-HANSA is expected to serve as a flagship electric trainer aircraft , integrating eco-friend...

The Evolution of the Computer Mouse: A Journey Through Innovation

The Evolution of the Computer Mouse: A Journey Through Innovation The computer mouse, a humble yet revolutionary input device, has undergone tremendous evolution since its inception. From bulky mechanical rollers to sleek, wireless, and AI-powered peripherals, the journey of the mouse reflects the rapid advancements in computing technology. In this article, we will explore the history, development, and future of the computer mouse while highlighting key innovations along the way. 1. The Birth of the Mouse (1960s) The first computer mouse was invented by Douglas Engelbart in 1964 at the Stanford Research Institute. It was made of wood and had a single button, with a system of wheels for detecting motion. The invention was demonstrated in 1968 in the famous "Mother of All Demos." Engelbart envisioned the mouse as part of a broader interactive computing system to enhance productivity. Key Features of Early Mice: Wooden casing Two metal wheels for movement A single button ...

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations Introduction to Climate Risk Index (CRI) The Climate Risk Index (CRI) 2025 is a globally recognized measure that ranks countries based on their vulnerability to extreme weather events over a defined period. This index assesses the impact of climate-related disasters such as floods, storms, heatwaves, and droughts. It serves as a critical indicator of how climate change affects human lives and economies across different regions. The CRI 2025 , published by German-watch , highlights India's growing vulnerability to climate-related disasters. India has been ranked as the 6th most affected country during 1993-2022 , highlighting the increasing frequency and severity of extreme weather events. Key Findings of CRI 2025 India's Climate Vulnerability India faced over 400 extreme weather events between 1993 and 2022 . The economic losses due to these disasters exceeded USD 180 billion . The death toll from climate-r...