Skip to main content

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

Aditya-L1 Captures First-Ever Image of Solar Flare ‘Kernel’: A Breakthrough in Solar Science

Aditya-L1 Captures First-Ever Image of Solar Flare ‘Kernel’: A Breakthrough in Solar Science



India's first dedicated solar mission, Aditya-L1, has achieved a significant milestone in space research. The Indian Space Research Organisation (ISRO) announced that the mission's Solar UltraViolet Imaging Telescope (SUIT) successfully captured the first-ever image of a solar flare 'kernel', marking a historic breakthrough in solar physics. This observation provides deep insights into the Sun’s explosive activities and their far-reaching impacts on Earth's space environment.


1. Understanding Solar Flares and the ‘Kernel’ Phenomenon

What is a Solar Flare?

A solar flare is a sudden and intense burst of radiation emitted from the Sun’s surface due to the sudden release of magnetic energy. These flares can be classified into different categories (A, B, C, M, and X) based on their intensity, with X-class flares being the most powerful.

What is a Flare Kernel?

  • The ‘kernel’ of a solar flare is the brightest, most concentrated region within the flare, where the most intense energy release occurs.
  • It is a small but highly energetic region that plays a crucial role in initiating and driving the overall flare dynamics.
  • The flare kernel is associated with processes such as magnetic reconnection, where oppositely directed magnetic field lines rearrange and release vast amounts of energy.

These energetic events can have major consequences for Earth and space technology, making their study a critical area of research.


2. Role of Aditya-L1 in Capturing the Solar Flare Kernel

Aditya-L1 Mission Overview

  • Aditya-L1 is India’s first solar observatory mission, launched by ISRO on September 2, 2023.
  • Positioned at the Lagrange Point L1 (about 1.5 million km from Earth), it enjoys an uninterrupted view of the Sun.
  • It is equipped with seven advanced scientific instruments, designed to study various aspects of the Sun, including its atmosphere, solar wind, and magnetic field.

How Aditya-L1 Captured the Kernel?

  • The Solar UltraViolet Imaging Telescope (SUIT) onboard Aditya-L1 recorded the first-ever high-resolution image of a solar flare kernel.
  • SUIT operates in the ultraviolet (UV) spectrum, allowing it to observe finer details of the Sun’s activity that are not visible in normal optical wavelengths.
  • This observation marks the first time that such a detailed image of the flare kernel has been obtained from space.

 

3. Scientific Importance of the Discovery

a) Understanding Solar Flare Mechanisms

  • The high-resolution image of the kernel provides direct evidence of localized energy release, helping scientists refine models of solar flare generation.
  • It sheds light on the interaction between the Sun’s magnetic field and plasma, crucial for understanding space weather events.

b) Impact on Space Weather Studies

  • Solar flares can cause geomagnetic storms, which disrupt communication networks, GPS systems, and power grids on Earth.
  • By studying the flare kernel’s formation and behavior, scientists can improve solar storm prediction models, helping mitigate risks to space infrastructure and human activities.

c) Contributions to Global Solar Research

  • Aditya-L1’s observations complement data from other major solar missions like:
    • NASA’s Parker Solar Probe (studying the Sun’s corona up close).
    • ESA’s Solar Orbiter (observing the Sun’s polar regions and magnetic fields).
  • The captured kernel image enhances our collective understanding of heliophysics, benefiting global scientific efforts.

4. Impact of Solar Flares on Earth and Space Technology

a) Effects on Earth's Magnetosphere

  • When a solar flare erupts, it often sends bursts of high-energy particles and electromagnetic radiation toward Earth.
  • These interactions can cause geomagnetic disturbances, leading to:
    • Disruptions in satellite communication.
    • Increased radiation exposure for astronauts and high-altitude flights.
    • Fluctuations in Earth's power grids and navigation systems.

b) Threats to Satellites and Space Missions

  • High-energy radiation from solar flares can damage sensitive electronics on satellites and degrade solar panels, reducing the lifespan of space assets.
  • Space agencies like NASA, ESA, and ISRO monitor solar activity to protect critical space infrastructure.

c) Impacts on Power Grids and Communication Systems

  • Intense solar storms can induce electric currents in power grids, leading to blackouts.
  • In 1989, a solar storm caused a major blackout in Quebec, Canada, shutting down power for millions of people.
  • Understanding the kernel’s role in flare initiation can help scientists develop early warning systems for solar storms.

 

5. Future Research and Applications

Continuous Monitoring by Aditya-L1

  • Aditya-L1 will continue observing the Sun’s activities, providing real-time data on solar flares, coronal mass ejections (CMEs), and the solar wind.
  • These observations will help in predicting space weather events with greater accuracy.

Advancements in Space Weather Forecasting

  • The data collected will be used to improve AI-driven predictive models, enhancing the accuracy of solar storm forecasts.
  • Governments and space agencies can use these insights to take preventive actions, such as temporarily shutting down vulnerable power grids or satellite systems before a storm hits.

Collaboration with Global Space Missions

  • Aditya-L1’s findings will be shared with international space agencies and research institutions to develop a more comprehensive understanding of the Sun’s behavior.
  • This mission strengthens India’s role in global space research and advances the study of solar physics.

6. Conclusion

The first-ever image of a solar flare kernel, captured by Aditya-L1, marks a significant advancement in heliophysics. This discovery will help scientists better understand the mechanisms behind solar flares, improve space weather forecasting, and develop protective measures against solar disruptions.

With continuous observations, Aditya-L1 will contribute to global solar research efforts, strengthening our ability to predict and mitigate the effects of space weather on Earth’s technology-dependent society.

This milestone is a testament to ISRO’s growing capabilities in space science, positioning India at the forefront of solar exploration and space weather research.

Popular posts from this blog

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

A Deep Dive into ISRO’s Gaganyaan Mission

As the Indian Space Research Organisation (ISRO) advances steadily towards launching its maiden human spaceflight mission — Gaganyaan — the emphasis on spaceflight safety has never been more crucial. India is on the brink of joining an elite group of nations capable of sending humans to space, and ISRO is leaving no stone unturned to ensure that every stage of the mission, from liftoff to landing, adheres to global safety standards. Gaganyaan is poised to become a landmark achievement in India’s space exploration journey. It aims to send three astronauts into low Earth orbit (LEO) for up to seven days. While this initial mission is not intended to dock with any space station, the selected crew is being familiarized with docking procedures , a forward-thinking move that prepares them for potential future missions involving orbital rendezvous and space station docking . Ensuring astronaut safety is a complex, multilayered process involving extensive planning, rigorous testing, and ...

IN-SPACe CANSAT & Model Rocketry India Student Competition 2024–25: A Giant Leap for Student Innovation

In a remarkable step towards strengthening India’s STEM education framework, the Astronautical Society of India (ASI), in collaboration with the Indian Space Research Organisation (ISRO) and the Indian National Space Promotion and Authorization Center (IN-SPACe), has launched the IN-SPACe CANSAT and Model Rocketry India Student Competition 2024–25 . This unique competition is crafted for undergraduate students across India, providing them with an opportunity to engage in experiential learning through the design, fabrication, and launch of CANSATs—can-sized satellites—using model rocketry platforms. The event held on June 14, 2025 , in Tamkuhi Raj, Kushinagar, Uttar Pradesh , was not a full-fledged rocket launch carrying an actual payload. Instead, it served as a critical site and systems validation test in preparation for the upcoming national student competition. This test focused on ensuring the readiness of launch site infrastructure, safety protocols, telemetry systems, and track...

Giant Plasma Tides Beneath the Sun: Indian Scientists Unlock Solar Secrets That Could Shape Space Weather

In a groundbreaking discovery that may significantly alter our understanding of solar dynamics and space weather, an international team of solar physicists, led by the Indian Institute of Astrophysics (IIA), has mapped giant tides of plasma flowing beneath the surface of the sun. These hidden plasma currents, located in a zone known as the near-surface shear layer (NSSL), have been shown to shift with the sun’s magnetic activity and could be a critical piece in solving the complex puzzle of space weather phenomena that affect life on Earth. The research, published in the prestigious Astrophysical Journal Letters , was carried out in collaboration with experts from Stanford University and the U.S. National Solar Observatory (NSO). The findings not only uncover previously invisible solar plasma flows , but also link them with magnetic field changes and solar cycles, offering new insight into the sun’s mysterious behavior. The Hidden Engine Beneath the Sun: What is the Near-Surface S...

NASA Veteran Mike Massimino Engages with PM SHRI Kendriya Vidyalaya Students

NASA Veteran Mike Massimino Engages with PM SHRI Kendriya Vidyalaya Students On February 28, 2025, former NASA astronaut Mike Massimino visited the PM SHRI Kendriya Vidyalaya in New Delhi, offering students a unique opportunity to interact with an experienced space explorer. Massimino's visit aimed to inspire and educate the young minds about space exploration, sharing his personal experiences and insights. Interactive Session with Students Personal Journey : Massimino recounted his path to becoming an astronaut, highlighting how a film about seven astronauts ignited his passion for space exploration. He emphasized the importance of perseverance and dedication in achieving one's dreams. Q&A Session : Students eagerly posed questions about various aspects of space missions, including the types of food consumed in space and daily routines aboard a spacecraft. Massimino provided detailed responses, offering a glimpse into the life of an astronaut. Zero Gravity Experiences Adap...

India’s Electric Hansa (E-HANSA): Pioneering Green Aviation with Indigenous Technology

India has embarked on a groundbreaking journey to revolutionize its aviation training sector with the development of the Electric Hansa (E-HANSA) —a next-generation, two-seater electric trainer aircraft developed indigenously by the Council of Scientific & Industrial Research – National Aerospace Laboratories (CSIR-NAL) in Bengaluru. Announced by Union Minister Dr. Jitendra Singh during a high-level monthly review meeting, this initiative places India firmly on the global map for sustainable and green aviation technologies . E-HANSA: A Leap Toward Green Aviation The E-HANSA aircraft is India's foray into electric aircraft development , aligning closely with national and global goals for carbon neutrality and clean energy adoption . As the world shifts towards climate-friendly technologies, the aviation industry—a traditionally high-emission sector—is witnessing a paradigm shift. The E-HANSA is expected to serve as a flagship electric trainer aircraft , integrating eco-friend...