Introduction: A Nuclear Vision for Viksit Bharat@2047 As India marches toward its ambitious goal of becoming a developed nation by 2047, energy security stands as a pivotal pillar in the vision of Viksit Bharat . Amid the global climate crisis and rising energy demands, nuclear power has re-emerged as a compelling solution. India’s commitment to achieving 100 GW of nuclear power capacity by 2047 is both visionary and necessary—but achieving this requires a strategic shift in policy, participation, and international cooperation. While India’s nuclear energy sector has traditionally been a tightly controlled domain under government monopoly—primarily led by the Department of Atomic Energy (DAE) and Nuclear Power Corporation of India Limited (NPCIL) —it is now imperative to welcome private sector investments and foreign partnerships. A reformed nuclear ecosystem can unlock the full potential of atomic energy as a clean, reliable, and scalable contributor to India’s net-zero aspiration...
ISRO Successfully Tests Semi-Cryogenic Engine for Future Heavy-Lift Missions BVC The Indian Space Research Organisation (ISRO) has achieved another significant milestone in its pursuit of advanced space propulsion technology. On [date], ISRO successfully conducted a crucial test of its semi-cryogenic engine, a key component required for future heavy-lift space missions. This breakthrough is expected to enhance India's space capabilities, paving the way for ambitious interplanetary missions and high-payload satellite launches. Image What is a Semi-Cryogenic Engine? A semi-cryogenic engine is a type of rocket propulsion system that uses a combination of liquid oxygen (LOX) as an oxidizer and kerosene-based fuel. Unlike fully cryogenic engines that use both LOX and liquid hydrogen (LH2), semi-cryogenic engines are more cost-effective and offer higher thrust, making them ideal for heavy-lift launch vehicles. Key Advantages of Semi-Cryogenic Engines Higher Thrust: Provides greater l...