Skip to main content

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

The New Bedmap of Antarctica: Unveiling the Secrets Beneath the Ice

Antarctica, the frozen continent at the bottom of the world, is undergoing a revolutionary transformation—not in its icy surface, but in our understanding of what lies beneath it. Scientists have recently released an updated Bedmap, offering the most detailed view yet of Antarctica’s bedrock hidden beneath miles of ice. This stunning revelation has profound implications for climate science, glaciology, and future sea-level predictions.

What is the Bedmap Project?

The Bedmap project is a scientific initiative aimed at mapping the topography of Antarctica’s bedrock. By using satellite data, radar surveys, and ice-penetrating technology, researchers create detailed models of the continent’s subglacial landscape. The latest iteration, Bedmap3, builds upon previous versions with enhanced resolution and unprecedented accuracy.

Why Mapping the Bedrock Matters

Antarctica’s ice sheets rest upon a complex landscape of valleys, mountains, and deep basins. Understanding the shape and features of the bedrock is crucial for several reasons:

  • Predicting Ice Flow: The underlying terrain influences how glaciers move, helping scientists model future ice loss.

  • Sea-Level Rise Forecasting: Knowing which areas of the ice sheet are most vulnerable to melting allows for better predictions of global sea-level rise.

  • Hidden Geological Features: The bedrock holds clues to Antarctica’s geological history, including ancient mountain ranges and rift valleys that have shaped the continent over millions of years.

How Scientists Created Bedmap3

To construct the most precise map yet, scientists integrated data from:

  • Airborne Ice-Penetrating Radar – Used by research aircraft to scan beneath the ice.

  • Satellite Measurements – Observations from ESA’s CryoSat and NASA’s ICESat missions.

  • Seismic Surveys – Vibrational waves revealing subsurface structures.

The result is a high-resolution map that reveals Antarctica’s hidden features with remarkable clarity, showing deep subglacial valleys, steep ridges, and buried mountain ranges that were once unknown.

Key Discoveries

  • The Deepest Point on Land: The Byrd Subglacial Basin reaches depths of over 3,500 meters below sea level, making it the lowest land point on Earth not covered by an ocean.

  • Previously Unseen Ridges: Newly mapped ridges under the ice influence ice flow dynamics more than previously thought.

  • Glacial Pathways: The map highlights channels where ice loss is accelerating, particularly in West Antarctica, which is more vulnerable to melting.

Implications for Climate Change

One of the most critical applications of Bedmap3 is improving predictions about Antarctic ice loss. With global temperatures rising, warm ocean currents are reaching Antarctic glaciers, increasing melt rates. By knowing the exact shape of the bedrock, scientists can better predict how ice sheets will behave in response to climate change, which is vital for accurate sea-level rise projections.

The Future of Antarctic Research

The new Bedmap is a major milestone, but research is ongoing. Future advancements in satellite technology and deep-ice exploration will continue refining our understanding of Antarctica’s hidden world. As scientists peel back the layers of ice, they uncover not just a frozen landscape but a dynamic and ever-changing system that holds critical answers to Earth's future.


Multiple-Choice Questions (MCQs)

1. What is the purpose of the Bedmap project?

A) To measure Antarctica’s surface ice thickness
B) To map the topography of Antarctica’s bedrock
C) To study the ocean currents around Antarctica
D) To analyze atmospheric conditions over the continent

Answer: B) To map the topography of Antarctica’s bedrock

2. What technology is primarily used to see beneath Antarctica’s ice sheets?

A) Infrared imaging
B) Ice-penetrating radar
C) Sonar detection
D) Magnetic resonance imaging

Answer: B) Ice-penetrating radar

3. Which newly mapped feature is the deepest land point on Earth?

A) East Antarctic Ice Sheet
B) Byrd Subglacial Basin
C) Transantarctic Mountains
D) Larsen Ice Shelf

Answer: B) Byrd Subglacial Basin

4. What is one key benefit of mapping Antarctica’s bedrock?

A) Enhancing communication signals in polar regions
B) Improving sea-level rise predictions
C) Discovering new species of ice-dwelling organisms
D) Increasing freshwater supply for human use

Answer: B) Improving sea-level rise predictions

5. What major concern does the new Bedmap help address?

A) The expansion of Antarctic tourism
B) Ice sheet vulnerability and climate change impact
C) The discovery of new fossil fuels
D) The migration patterns of penguins

Answer: B) Ice sheet vulnerability and climate change impact

Popular posts from this blog

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

IN-SPACe CANSAT & Model Rocketry India Student Competition 2024–25: A Giant Leap for Student Innovation

In a remarkable step towards strengthening India’s STEM education framework, the Astronautical Society of India (ASI), in collaboration with the Indian Space Research Organisation (ISRO) and the Indian National Space Promotion and Authorization Center (IN-SPACe), has launched the IN-SPACe CANSAT and Model Rocketry India Student Competition 2024–25 . This unique competition is crafted for undergraduate students across India, providing them with an opportunity to engage in experiential learning through the design, fabrication, and launch of CANSATs—can-sized satellites—using model rocketry platforms. The event held on June 14, 2025 , in Tamkuhi Raj, Kushinagar, Uttar Pradesh , was not a full-fledged rocket launch carrying an actual payload. Instead, it served as a critical site and systems validation test in preparation for the upcoming national student competition. This test focused on ensuring the readiness of launch site infrastructure, safety protocols, telemetry systems, and track...

A Deep Dive into ISRO’s Gaganyaan Mission

As the Indian Space Research Organisation (ISRO) advances steadily towards launching its maiden human spaceflight mission — Gaganyaan — the emphasis on spaceflight safety has never been more crucial. India is on the brink of joining an elite group of nations capable of sending humans to space, and ISRO is leaving no stone unturned to ensure that every stage of the mission, from liftoff to landing, adheres to global safety standards. Gaganyaan is poised to become a landmark achievement in India’s space exploration journey. It aims to send three astronauts into low Earth orbit (LEO) for up to seven days. While this initial mission is not intended to dock with any space station, the selected crew is being familiarized with docking procedures , a forward-thinking move that prepares them for potential future missions involving orbital rendezvous and space station docking . Ensuring astronaut safety is a complex, multilayered process involving extensive planning, rigorous testing, and ...

India’s Electric Hansa (E-HANSA): Pioneering Green Aviation with Indigenous Technology

India has embarked on a groundbreaking journey to revolutionize its aviation training sector with the development of the Electric Hansa (E-HANSA) —a next-generation, two-seater electric trainer aircraft developed indigenously by the Council of Scientific & Industrial Research – National Aerospace Laboratories (CSIR-NAL) in Bengaluru. Announced by Union Minister Dr. Jitendra Singh during a high-level monthly review meeting, this initiative places India firmly on the global map for sustainable and green aviation technologies . E-HANSA: A Leap Toward Green Aviation The E-HANSA aircraft is India's foray into electric aircraft development , aligning closely with national and global goals for carbon neutrality and clean energy adoption . As the world shifts towards climate-friendly technologies, the aviation industry—a traditionally high-emission sector—is witnessing a paradigm shift. The E-HANSA is expected to serve as a flagship electric trainer aircraft , integrating eco-friend...

The Evolution of the Computer Mouse: A Journey Through Innovation

The Evolution of the Computer Mouse: A Journey Through Innovation The computer mouse, a humble yet revolutionary input device, has undergone tremendous evolution since its inception. From bulky mechanical rollers to sleek, wireless, and AI-powered peripherals, the journey of the mouse reflects the rapid advancements in computing technology. In this article, we will explore the history, development, and future of the computer mouse while highlighting key innovations along the way. 1. The Birth of the Mouse (1960s) The first computer mouse was invented by Douglas Engelbart in 1964 at the Stanford Research Institute. It was made of wood and had a single button, with a system of wheels for detecting motion. The invention was demonstrated in 1968 in the famous "Mother of All Demos." Engelbart envisioned the mouse as part of a broader interactive computing system to enhance productivity. Key Features of Early Mice: Wooden casing Two metal wheels for movement A single button ...

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations Introduction to Climate Risk Index (CRI) The Climate Risk Index (CRI) 2025 is a globally recognized measure that ranks countries based on their vulnerability to extreme weather events over a defined period. This index assesses the impact of climate-related disasters such as floods, storms, heatwaves, and droughts. It serves as a critical indicator of how climate change affects human lives and economies across different regions. The CRI 2025 , published by German-watch , highlights India's growing vulnerability to climate-related disasters. India has been ranked as the 6th most affected country during 1993-2022 , highlighting the increasing frequency and severity of extreme weather events. Key Findings of CRI 2025 India's Climate Vulnerability India faced over 400 extreme weather events between 1993 and 2022 . The economic losses due to these disasters exceeded USD 180 billion . The death toll from climate-r...