Skip to main content

Redeeming India’s Nuclear Power Promise: A Clean Energy Imperative for 2047

Introduction: A Nuclear Vision for Viksit Bharat@2047 As India marches toward its ambitious goal of becoming a developed nation by 2047, energy security stands as a pivotal pillar in the vision of Viksit Bharat . Amid the global climate crisis and rising energy demands, nuclear power has re-emerged as a compelling solution. India’s commitment to achieving 100 GW of nuclear power capacity by 2047 is both visionary and necessary—but achieving this requires a strategic shift in policy, participation, and international cooperation. While India’s nuclear energy sector has traditionally been a tightly controlled domain under government monopoly—primarily led by the Department of Atomic Energy (DAE) and Nuclear Power Corporation of India Limited (NPCIL) —it is now imperative to welcome private sector investments and foreign partnerships. A reformed nuclear ecosystem can unlock the full potential of atomic energy as a clean, reliable, and scalable contributor to India’s net-zero aspiration...

How Technology Shapes Global Power: Lessons for India

In today’s world, power is no longer defined solely by military might or economic clout. It is increasingly shaped by a country’s ability to harness, diffuse, and govern technology. In a recent essay, renowned public intellectual Pratap Bhanu Mehta offers a powerful insight into how technology reshapes the global balance of power — and why India needs to rethink its strategy if it wishes to emerge as a genuine technology leader.

Rather than obsessing over sectoral dominance — whether in artificial intelligence (AI), semiconductors, or quantum computing — Mehta argues that India should focus on fostering an ecosystem that enables the diffusion of General Purpose Technologies (GPTs). These are technologies that do not merely transform single industries but instead spark cascading changes across the entire economy and society.

The idea is both simple and radical: power in the 21st century is not about who owns a particular technology but about who enables its widespread and inclusive use.

Understanding the Power of General Purpose Technologies

To grasp Mehta’s argument, we must first understand what GPTs are. These are technologies that can be applied across a wide range of sectors and that fuel innovation far beyond their original domains. Classic examples from history include electricity and the internet. Today, modern GPTs include AI, blockchain, quantum computing, 5G/6G, semiconductors, renewable energy systems, and biotechnology.

What distinguishes GPTs is their ability to serve as infrastructure — foundations on which countless other innovations can be built. GPTs are not just tools; they are transformation platforms. Once embedded into the fabric of the economy, they generate exponential value by triggering new products, services, and even entire industries.

And herein lies the challenge for India: while much attention has been given to excelling in individual technologies — becoming a chip manufacturing hub or a global AI development center — the country has often neglected the more important task of enabling these technologies to penetrate every layer of its society and economy.

India’s Tech Landscape: Ambitious but Fragmented

India’s technology ambitions are expansive and, in many ways, admirable. Through initiatives like Digital India, Make in India, Atmanirbhar Bharat, and the Semicon India Programme, the government has shown a deep commitment to technological advancement. In recent years, India has also launched the National Quantum Mission and bolstered support for the startup ecosystem, making it the third-largest in the world.

Yet despite these efforts, India’s approach has often been piecemeal and overly focused on sectoral wins. This obsession with being number one in AI or semiconductors may yield symbolic victories but does little to ensure that technology becomes a lever of inclusive development or a source of systemic power.

The real question is not whether India can build one or two globally competitive sectors, but whether it can democratize the access to and benefits of General Purpose Technologies — in agriculture, education, health, logistics, and beyond.

Moving from Dominance to Diffusion

Mehta’s insight is a call for a strategic pivot: if India wants to shape the future balance of power, it must build mechanisms for the broad-based diffusion of GPTs, not just their elite capture.

Take, for example, India’s pioneering work in Digital Public Infrastructure (DPI). Aadhaar (digital identity), UPI (unified payments interface), and CoWIN (vaccination platform) have created a digital backbone that now enables millions to access services, make payments, and verify identity with unprecedented ease. These are examples of technology not as privilege, but as public good.

Extending this model to other GPTs is both possible and necessary. Building a National Health Stack, operationalizing the Open Network for Digital Commerce (ONDC), and creating AI-driven EdTech platforms could ensure that every citizen, not just tech companies, benefits from the next generation of innovations.

This is how India can make technology sovereign — not by closing its doors to foreign platforms or building walls around its internet, but by designing systems that enable local, diverse, and creative uses of cutting-edge technologies.

R&D, Skilling, and Ecosystem Thinking

For this transformation to happen, India needs to significantly boost its capacity for foundational research and development. Currently, India spends just 0.65% of its GDP on R&D, lagging far behind countries like the United States, South Korea, or Israel. Without sustained investment in science and research, India cannot expect to lead or even meaningfully participate in the development of GPTs.

But beyond raw investment, the real challenge is institutional. Indian universities remain underfunded and poorly integrated with the tech ecosystem. Industry-academia linkages are weak. Government departments often work in silos. A more agile, cross-sectoral approach is required — one that promotes research parks, innovation clusters, and mission-driven public-private partnerships.

Equally vital is the need to address the skills gap. GPTs like AI and quantum computing require new ways of thinking and doing. India's education and skilling systems must be reoriented toward lifelong learning, interdisciplinary knowledge, and future-readiness. This is especially important if we want these technologies to reach beyond elite urban centers and benefit rural and semi-urban populations as well.

Democratizing Innovation

One of India's great strengths is its pluralistic, decentralized innovation culture. Unlike authoritarian states that centralize control over technology, India has the potential to unleash bottom-up innovation that is socially embedded and locally relevant.

But to make this happen, the government must move away from top-down approaches and invest in decentralized tech ecosystems. This means supporting local AI applications in regional languages, IoT-based farming tools, and telemedicine platforms for rural health workers. It means embracing frugal innovation alongside frontier science.

In short, innovation must be contextualized — not just copied from Silicon Valley or Shenzhen.

Strategic Autonomy and the Tech Power Game

The geopolitics of technology is heating up, and India finds itself navigating a volatile terrain. The US-China tech war, export controls on semiconductors, and debates on digital sovereignty have all highlighted the risks of overdependence on foreign tech ecosystems.

While India should not fall into the trap of techno-nationalism, it must build sufficient strategic autonomy in key areas like trusted hardware, cybersecurity, and AI governance. Developing dual-use technologies that serve both civilian and military purposes will be critical to safeguarding national interests.

Moreover, India needs to participate more actively in setting global tech standards. This is where GPTs become a geopolitical instrument — the nations that define the rules around data, AI ethics, and cross-border flows will be the ones shaping the future global order.

Toward a New Policy Mindset

If India is serious about becoming a global tech leader by 2030, it needs a new policy mindset — one that is mission-oriented, inclusive, and forward-looking. Technology policy should not be treated as a subset of industrial policy or national security; it must be seen as nation-building infrastructure.

This means crafting a coherent national strategy that cuts across ministries and sectors. It means treating public data as a strategic asset, not a liability. It means creating smart regulatory sandboxes for AI and biotech, encouraging experimentation while protecting public interest.

Above all, it means recognizing that the true measure of a technology superpower is not how many chips it produces or how many unicorns it has — but how effectively it turns breakthrough technologies into everyday tools for real people.

Final Thoughts

Pratap Bhanu Mehta’s reflections remind us that the politics of technology is not just about innovation, but about inclusion, institutions, and imagination. Power in the 21st century will not come from control, but from the capacity to empower others through the diffusion of General Purpose Technologies.

India has the talent, the ambition, and the democratic DNA to lead in this space. But to do so, it must stop chasing technological trophies and start building technological foundations. Only then can we ensure that the future of technology is not just Indian-made, but Indian-shaped.

MCQs 

  1. What are General Purpose Technologies (GPTs)?
    Answer: Technologies with cross-sectoral impact.

  2. Which of the following is an example of India’s Digital Public Infrastructure?
    Answer: Aadhaar.

  3. According to Pratap Bhanu Mehta, technology leadership requires:
    Answer: Broad-based diffusion of technologies.


Popular posts from this blog

Trump's Policy Uncertainty Sends Biotech Sector into a Slump

In recent years, the biotech industry has emerged as a cornerstone of innovation, especially in areas like gene therapy , personalized medicine , and vaccine development . However, this dynamic and promising sector is highly sensitive to government regulations , policy frameworks , and economic signals . Under the Trump administration , the biotech sector witnessed a turbulent journey, driven by policy uncertainty , sudden regulatory shifts, and volatile rhetoric on healthcare pricing reforms . This blog delves into how Trump’s policy ambiguity and decision-making style impacted the biotech industry, contributing to a market slump and investor hesitancy. It also analyzes the broader implications for pharmaceutical innovation , R&D funding , and global biotech partnerships . Trump Administration and Policy Volatility One of the defining features of Donald Trump’s presidency was his unconventional approach to governance . For sectors like biotech, which rely on predictable and ...

SpaceX Crew Docks with ISS: A Historic Rescue Mission for Stranded Astronauts

SpaceX Crew Docks with ISS: A Historic Rescue Mission for Stranded Astronauts Introduction In a groundbreaking mission, SpaceX Crew Dragon successfully docked with the International Space Station (ISS) to rescue astronauts who had been stranded in space for over nine months . The mission, which captured global attention, highlights the crucial role of private spaceflight in modern space exploration . But how did these astronauts get stuck in space? What challenges did NASA and SpaceX face in bringing them home? Let's dive into this extraordinary story. How Astronauts Got Stranded in Space The Soyuz MS-22 mission , launched by Russia’s Roscosmos , suffered a critical coolant leak in December 2022, rendering the spacecraft unsafe for the return journey. This left two Russian cosmonauts and one NASA astronaut without a way back to Earth. With no immediate backup plan, NASA and Roscosmos collaborated to find a solution while ensuring the astronauts' safety onboard the ISS. ...

CERN Collider Breakthrough: Why the Universe Prefers Matter Over Antimatter

Introduction: A Universe Built on Bias? In a groundbreaking discovery at CERN, scientists have finally found concrete evidence that the laws of physics differ for matter and antimatter . This observation could solve one of the most perplexing mysteries in cosmology — why our universe is made almost entirely of matter , even though the Big Bang should have produced equal amounts of matter and antimatter . This new clue comes from experiments conducted at the Large Hadron Collider (LHC) , the world’s most powerful particle accelerator, located near Geneva, Switzerland. The finding marks a pivotal advancement in the field of particle physics , with implications for the Standard Model , CP violation , and our fundamental understanding of the origin of the universe . What is Matter-Antimatter Asymmetry? At the dawn of the universe, matter and antimatter were created in equal proportions. Each particle of matter has an antimatter counterpart — with the same mass but opposite charge. Whe...

Redeeming India’s Nuclear Power Promise: A Clean Energy Imperative for 2047

Introduction: A Nuclear Vision for Viksit Bharat@2047 As India marches toward its ambitious goal of becoming a developed nation by 2047, energy security stands as a pivotal pillar in the vision of Viksit Bharat . Amid the global climate crisis and rising energy demands, nuclear power has re-emerged as a compelling solution. India’s commitment to achieving 100 GW of nuclear power capacity by 2047 is both visionary and necessary—but achieving this requires a strategic shift in policy, participation, and international cooperation. While India’s nuclear energy sector has traditionally been a tightly controlled domain under government monopoly—primarily led by the Department of Atomic Energy (DAE) and Nuclear Power Corporation of India Limited (NPCIL) —it is now imperative to welcome private sector investments and foreign partnerships. A reformed nuclear ecosystem can unlock the full potential of atomic energy as a clean, reliable, and scalable contributor to India’s net-zero aspiration...

National Quantum Mission: India's Quantum Leap – Unleashing the Power of Quantum Technology and Creating Jobs of Tomorrow

National Quantum Mission: India's Quantum Leap – Unleashing the Power of Quantum Technology and Creating Jobs of Tomorrow Introduction: In a world increasingly driven by cutting-edge technology, quantum computing and quantum technologies are emerging as the next frontier of innovation. Recognizing the transformative potential of this field, India has launched the  National Quantum Mission (NQM) , a bold initiative aimed at positioning the country as a global leader in quantum technology. This mission is not just about scientific advancement; it’s about unlocking new possibilities, solving complex problems, and creating the jobs of tomorrow. In this blog, we’ll explore the National Quantum Mission in detail, its objectives, the science behind quantum technology, its potential applications, and how it can shape India’s future. What is the National Quantum Mission? The National Quantum Mission is a flagship initiative by the Government of India to accelerate research, development, and...

National Science Day 2025: Empowering Indian Youth for Global Leadership in Science & Innovation

National Science Day 2025: Empowering Indian Youth for Global Leadership in Science & Innovation About National Science Day (NSD) Date of Celebration : February 28 every year. Purpose : To commemorate the discovery of the Raman Effect by Sir C.V. Raman in 1928. Recognition : The Government of India designated February 28 as National Science Day (NSD) in 1986. Significance : Encourages scientific awareness and curiosity among citizens. Promotes science and technology as a means for national development. Provides students with exposure to career opportunities in research and innovation. Theme for National Science Day 2025 Theme : “Empowering Indian Youth for Global Leadership in Science & Innovation for Viksit Bharat” Inspiration : Derived from Prime Minister Narendra Modi’s vision of Viksit Bharat (Developed India) . Highlights the importance of youth in driving scientific progress and innovation on a global scale. Objective : Encourage young minds to explore STEM (Science, ...