Skip to main content

India’s AMCA Programme Takes Flight: A Stealth Leap into the Future of Air Combat

In a major leap toward self-reliance in defense technology, India is set to develop its very own fifth-generation fighter jet—the Advanced Medium Combat Aircraft (AMCA) . In a historic move, Defence Minister Rajnath Singh has approved an innovative execution model for the indigenous stealth fighter programme. This model brings together Hindustan Aeronautics Limited (HAL) and private industry players in a competitive framework, marking a significant shift in how India approaches military aviation manufacturing. This bold initiative comes at a critical time, as China has already fielded two fifth-generation fighters , and reports indicate it will supply 40 J-35 stealth jets to Pakistan . Against this backdrop, fast-tracking the AMCA has become an urgent national security imperative. AMCA: India’s Indigenous Stealth Fighter Dream The AMCA project , spearheaded by the Aeronautical Development Agency (ADA) under the Defence Research and Development Organisation (DRDO) , received its l...

How Technology Shapes Global Power: Lessons for India

In today’s world, power is no longer defined solely by military might or economic clout. It is increasingly shaped by a country’s ability to harness, diffuse, and govern technology. In a recent essay, renowned public intellectual Pratap Bhanu Mehta offers a powerful insight into how technology reshapes the global balance of power — and why India needs to rethink its strategy if it wishes to emerge as a genuine technology leader.

Rather than obsessing over sectoral dominance — whether in artificial intelligence (AI), semiconductors, or quantum computing — Mehta argues that India should focus on fostering an ecosystem that enables the diffusion of General Purpose Technologies (GPTs). These are technologies that do not merely transform single industries but instead spark cascading changes across the entire economy and society.

The idea is both simple and radical: power in the 21st century is not about who owns a particular technology but about who enables its widespread and inclusive use.

Understanding the Power of General Purpose Technologies

To grasp Mehta’s argument, we must first understand what GPTs are. These are technologies that can be applied across a wide range of sectors and that fuel innovation far beyond their original domains. Classic examples from history include electricity and the internet. Today, modern GPTs include AI, blockchain, quantum computing, 5G/6G, semiconductors, renewable energy systems, and biotechnology.

What distinguishes GPTs is their ability to serve as infrastructure — foundations on which countless other innovations can be built. GPTs are not just tools; they are transformation platforms. Once embedded into the fabric of the economy, they generate exponential value by triggering new products, services, and even entire industries.

And herein lies the challenge for India: while much attention has been given to excelling in individual technologies — becoming a chip manufacturing hub or a global AI development center — the country has often neglected the more important task of enabling these technologies to penetrate every layer of its society and economy.

India’s Tech Landscape: Ambitious but Fragmented

India’s technology ambitions are expansive and, in many ways, admirable. Through initiatives like Digital India, Make in India, Atmanirbhar Bharat, and the Semicon India Programme, the government has shown a deep commitment to technological advancement. In recent years, India has also launched the National Quantum Mission and bolstered support for the startup ecosystem, making it the third-largest in the world.

Yet despite these efforts, India’s approach has often been piecemeal and overly focused on sectoral wins. This obsession with being number one in AI or semiconductors may yield symbolic victories but does little to ensure that technology becomes a lever of inclusive development or a source of systemic power.

The real question is not whether India can build one or two globally competitive sectors, but whether it can democratize the access to and benefits of General Purpose Technologies — in agriculture, education, health, logistics, and beyond.

Moving from Dominance to Diffusion

Mehta’s insight is a call for a strategic pivot: if India wants to shape the future balance of power, it must build mechanisms for the broad-based diffusion of GPTs, not just their elite capture.

Take, for example, India’s pioneering work in Digital Public Infrastructure (DPI). Aadhaar (digital identity), UPI (unified payments interface), and CoWIN (vaccination platform) have created a digital backbone that now enables millions to access services, make payments, and verify identity with unprecedented ease. These are examples of technology not as privilege, but as public good.

Extending this model to other GPTs is both possible and necessary. Building a National Health Stack, operationalizing the Open Network for Digital Commerce (ONDC), and creating AI-driven EdTech platforms could ensure that every citizen, not just tech companies, benefits from the next generation of innovations.

This is how India can make technology sovereign — not by closing its doors to foreign platforms or building walls around its internet, but by designing systems that enable local, diverse, and creative uses of cutting-edge technologies.

R&D, Skilling, and Ecosystem Thinking

For this transformation to happen, India needs to significantly boost its capacity for foundational research and development. Currently, India spends just 0.65% of its GDP on R&D, lagging far behind countries like the United States, South Korea, or Israel. Without sustained investment in science and research, India cannot expect to lead or even meaningfully participate in the development of GPTs.

But beyond raw investment, the real challenge is institutional. Indian universities remain underfunded and poorly integrated with the tech ecosystem. Industry-academia linkages are weak. Government departments often work in silos. A more agile, cross-sectoral approach is required — one that promotes research parks, innovation clusters, and mission-driven public-private partnerships.

Equally vital is the need to address the skills gap. GPTs like AI and quantum computing require new ways of thinking and doing. India's education and skilling systems must be reoriented toward lifelong learning, interdisciplinary knowledge, and future-readiness. This is especially important if we want these technologies to reach beyond elite urban centers and benefit rural and semi-urban populations as well.

Democratizing Innovation

One of India's great strengths is its pluralistic, decentralized innovation culture. Unlike authoritarian states that centralize control over technology, India has the potential to unleash bottom-up innovation that is socially embedded and locally relevant.

But to make this happen, the government must move away from top-down approaches and invest in decentralized tech ecosystems. This means supporting local AI applications in regional languages, IoT-based farming tools, and telemedicine platforms for rural health workers. It means embracing frugal innovation alongside frontier science.

In short, innovation must be contextualized — not just copied from Silicon Valley or Shenzhen.

Strategic Autonomy and the Tech Power Game

The geopolitics of technology is heating up, and India finds itself navigating a volatile terrain. The US-China tech war, export controls on semiconductors, and debates on digital sovereignty have all highlighted the risks of overdependence on foreign tech ecosystems.

While India should not fall into the trap of techno-nationalism, it must build sufficient strategic autonomy in key areas like trusted hardware, cybersecurity, and AI governance. Developing dual-use technologies that serve both civilian and military purposes will be critical to safeguarding national interests.

Moreover, India needs to participate more actively in setting global tech standards. This is where GPTs become a geopolitical instrument — the nations that define the rules around data, AI ethics, and cross-border flows will be the ones shaping the future global order.

Toward a New Policy Mindset

If India is serious about becoming a global tech leader by 2030, it needs a new policy mindset — one that is mission-oriented, inclusive, and forward-looking. Technology policy should not be treated as a subset of industrial policy or national security; it must be seen as nation-building infrastructure.

This means crafting a coherent national strategy that cuts across ministries and sectors. It means treating public data as a strategic asset, not a liability. It means creating smart regulatory sandboxes for AI and biotech, encouraging experimentation while protecting public interest.

Above all, it means recognizing that the true measure of a technology superpower is not how many chips it produces or how many unicorns it has — but how effectively it turns breakthrough technologies into everyday tools for real people.

Final Thoughts

Pratap Bhanu Mehta’s reflections remind us that the politics of technology is not just about innovation, but about inclusion, institutions, and imagination. Power in the 21st century will not come from control, but from the capacity to empower others through the diffusion of General Purpose Technologies.

India has the talent, the ambition, and the democratic DNA to lead in this space. But to do so, it must stop chasing technological trophies and start building technological foundations. Only then can we ensure that the future of technology is not just Indian-made, but Indian-shaped.

MCQs 

  1. What are General Purpose Technologies (GPTs)?
    Answer: Technologies with cross-sectoral impact.

  2. Which of the following is an example of India’s Digital Public Infrastructure?
    Answer: Aadhaar.

  3. According to Pratap Bhanu Mehta, technology leadership requires:
    Answer: Broad-based diffusion of technologies.


Popular posts from this blog

Manasvi: IIT Delhi’s Bold Step Toward Empowering High School Girls in STEM

In a world increasingly shaped by technological advancement, ensuring gender equality in STEM (Science, Technology, Engineering, and Mathematics) is no longer a choice—it’s a necessity. Recognizing this, the Indian Institute of Technology (IIT) Delhi launched a pioneering initiative titled ‘Manasvi’ , a STEM mentorship programme for high school girls . The programme, unveiled in New Delhi today, is spearheaded by the institute’s Academic Outreach and New Initiatives Office . Manasvi is not merely an educational engagement; it is a transformative platform aimed at inspiring and empowering young girls to pursue careers in STEM, fields traditionally dominated by men. At the heart of Manasvi lies the ambition to address the deep-rooted gender disparity in STEM education and careers . Despite producing the largest number of science graduates globally, India continues to see disproportionately low female representation in STEM careers —a statistic that underscores the urgent need for su...

India’s AMCA Programme Takes Flight: A Stealth Leap into the Future of Air Combat

In a major leap toward self-reliance in defense technology, India is set to develop its very own fifth-generation fighter jet—the Advanced Medium Combat Aircraft (AMCA) . In a historic move, Defence Minister Rajnath Singh has approved an innovative execution model for the indigenous stealth fighter programme. This model brings together Hindustan Aeronautics Limited (HAL) and private industry players in a competitive framework, marking a significant shift in how India approaches military aviation manufacturing. This bold initiative comes at a critical time, as China has already fielded two fifth-generation fighters , and reports indicate it will supply 40 J-35 stealth jets to Pakistan . Against this backdrop, fast-tracking the AMCA has become an urgent national security imperative. AMCA: India’s Indigenous Stealth Fighter Dream The AMCA project , spearheaded by the Aeronautical Development Agency (ADA) under the Defence Research and Development Organisation (DRDO) , received its l...

The Golden Dome Missile Defense System: The Future of U.S. Airspace Protection

The Golden Dome Missile Defense System: The Future of U.S. Airspace Protection Introduction The United States has proposed an ambitious missile defense program known as the Golden Dome Missile Defense System . This initiative aims to protect the country from various airborne threats, including ballistic missiles, hypersonic weapons, and cruise missiles. Drawing inspiration from Israel’s renowned Iron Dome , the Golden Dome is set to be a comprehensive, multi-layered defense system that will redefine national security. This blog explores the significance, capabilities, technological advancements, and potential impact of the Golden Dome on global defense strategies. Understanding Missile Defense Systems Modern warfare increasingly relies on missile technology, and nations worldwide are investing in advanced defense systems. Missile defense systems are classified based on their operational range and the types of threats they counter. Some of the key categories include: Short-range mis...

DRDO Successfully Tests Stratospheric Airship Platform: A Leap in India's High-Altitude Defence Technology

In a groundbreaking achievement, India’s Defence Research and Development Organisation (DRDO) conducted the maiden flight-trials of its Stratospheric Airship Platform on May 3, 2025. Developed by the Aerial Delivery Research and Development Establishment (ADRDE) in Agra, this high-altitude platform marks a historic milestone in India’s march toward advanced aerospace systems and cutting-edge defence technology . What Is a Stratospheric Airship Platform? A stratospheric airship is a lighter-than-air, unmanned aerial vehicle designed to fly at stratospheric altitudes—typically between 17 to 20 kilometers—well above commercial air traffic and weather disturbances. These airships serve as High-Altitude Platform Systems (HAPS) and are envisioned as persistent platforms for earth observation, telecommunication, disaster management , and most importantly, Intelligence, Surveillance & Reconnaissance (ISR) operations. Unlike traditional satellites, HAPS like the DRDO’s airship offer...

Direct-to-Device (D2D) Satellite Connectivity: Revolutionizing Global Communication

Bharat Sanchar Nigam Limited (BSNL) has taken a groundbreaking step by launching India’s first Direct-to-Device (D2D) satellite connectivity . This cutting-edge technology eliminates the need for traditional cell towers , allowing satellites to directly connect with consumer devices. With this initiative, India joins the global movement towards seamless, space-based communication , ensuring connectivity even in the most remote regions. This article delves into D2D satellite technology, its working principles, key features, global players, and its transformative impact on connectivity . What is Direct-to-Device (D2D) Satellite Connectivity? Definition Direct-to-Device (D2D) satellite technology enables satellites to function as cell towers in space , facilitating direct communication with mobile devices without the need for terrestrial infrastructure . This is a major advancement in global communication, ensuring ubiquitous network coverage . How Does D2D Satellite Connectivity Work? ...

IISc-Developed Zero Bacteria Technology for STPs in Apartments

IISc-Developed Zero Bacteria Technology for STPs in Apartments A Game-Changer for Water Quality The Indian Institute of Science (IISc) has developed an advanced "Zero Bacteria Technology" (ZBT) to improve water quality in Sewage Treatment Plants (STPs) , especially in apartment complexes. This innovation ensures cleaner, bacteria-free treated water , making it safer for reuse. What is Zero Bacteria Technology (ZBT)? A new water purification technique designed to eliminate harmful bacteria in treated sewage water. Uses a chemical-free process , making it environmentally friendly. Developed by scientists at IISc , with applications in residential STPs and industrial wastewater management . Why is ZBT Important for Apartments? Many apartment complexes have their own Sewage Treatment Plants (STPs) . Traditional STPs do not fully remove bacteria , leading to health risks when water is reused for gardening, flushing, or groundwater recharge. ZBT ensures bacteria-free treated wa...