Skip to main content

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

Giant Plasma Tides Beneath the Sun: Indian Scientists Unlock Solar Secrets That Could Shape Space Weather

In a groundbreaking discovery that may significantly alter our understanding of solar dynamics and space weather, an international team of solar physicists, led by the Indian Institute of Astrophysics (IIA), has mapped giant tides of plasma flowing beneath the surface of the sun. These hidden plasma currents, located in a zone known as the near-surface shear layer (NSSL), have been shown to shift with the sun’s magnetic activity and could be a critical piece in solving the complex puzzle of space weather phenomena that affect life on Earth.

The research, published in the prestigious Astrophysical Journal Letters, was carried out in collaboration with experts from Stanford University and the U.S. National Solar Observatory (NSO). The findings not only uncover previously invisible solar plasma flows, but also link them with magnetic field changes and solar cycles, offering new insight into the sun’s mysterious behavior.

The Hidden Engine Beneath the Sun: What is the Near-Surface Shear Layer (NSSL)?

The near-surface shear layer (NSSL) is a region that extends roughly 35,000 kilometers below the sun’s photosphere. This layer is a hotbed of turbulent plasma activity — a zone where the rotational behavior of solar material undergoes drastic changes depending on depth and latitude.

According to the Department of Science and Technology (DST), India, the NSSL is “a critical region beneath the sun’s surface,” and it’s directly influenced by the dynamic interplay of magnetic fields, solar cycles, and Coriolis forces. Understanding the NSSL is key to decoding how solar interiors are tied to external magnetic behavior — and ultimately, solar eruptions like solar flares and coronal mass ejections (CMEs) that cause geomagnetic storms on Earth.

Plasma Currents and the Sun’s Magnetic Pulse: How the Sun Breathes

The research team used helioseismology — a method similar to how seismologists study earthquakes — to trace the motions of solar material beneath the surface. Much like how seismologists use shockwaves to study Earth's inner layers, solar physicists use sound waves trapped inside the sun to measure internal movements.

Led by Professor S.P. Rajaguru and PhD student Anisha Sen at IIA, the team observed that surface plasma flows tend to converge toward latitudes where sunspots are most active. But intriguingly, these flows reverse direction midway through the NSSL, forming massive circulation cells. These cells channel plasma outward from the inner layers — a process strongly governed by Coriolis forces, the same mechanism that causes Earth’s hurricanes to spin.

“These flows are strongly influenced by the sun’s rotation and the Coriolis force,” explained the DST. “The localised flow patterns we observed matched the global trends — confirming both surface inflows and deeper outflows.”

Why This Matters: Impact on Space Weather and Earth

So why should we care about these plasma flows deep inside the sun?

The answer lies in space weather — the term for all electromagnetic and particle activity that radiates from the sun and interacts with Earth’s magnetic field. Events like solar flares, geomagnetic storms, and auroras are all driven by magnetic disturbances originating from deep within the sun.

When magnetic reconnections or sudden realignments of magnetic fields occur, they can eject massive amounts of charged particles toward Earth. These can disrupt GPS satellites, damage power grids, and pose serious risks to astronauts. Understanding the origin and behavior of such disturbances begins with a solid grasp of how internal solar flows influence external solar magnetic fields.

This new research suggests that much of what shapes these magnetic anomalies may originate in the NSSL. By studying the plasma tides in this zone, scientists can potentially improve space weather forecasting and reduce the risk posed by sudden solar storms.

Sunspots, Solar Cycles, and Magnetic Activity: The Missing Links

Sunspots — the dark patches on the sun’s surface — are visible indicators of underlying magnetic activity. They follow an 11-year solar cycle, during which the sun’s magnetic field reverses and solar activity waxes and wanes. The number and location of sunspots change over time and are used to predict the frequency of solar flares and CMEs.

The plasma tides discovered in the NSSL appear to be intricately linked to these sunspot zones. The study revealed that inflows toward sunspot latitudes occur near the surface, while outflows at deeper layers form circulation systems that are synchronized with the solar magnetic cycle.

This interplay suggests that something deeper than previously understood — possibly in the NSSL or even deeper — is controlling the rhythm of solar magnetism.

The Role of Indian Science in Global Solar Physics

This discovery is not just a milestone in astrophysics — it’s a major step forward for Indian science on the global stage. The IIA-led effort puts India at the forefront of heliophysics — the study of the sun and its influence on the solar system — and demonstrates the country’s capacity for cutting-edge space science collaboration.

IIA’s contributions to solar observations, data processing, and theoretical modeling have laid the groundwork for even more ambitious solar missions, including India’s Aditya-L1, the country's first solar observatory launched to study the sun from the Lagrange L1 point.

Coriolis Force: The Cosmic Twist Behind Solar Circulation

One of the key forces shaping the plasma flows in the NSSL is the Coriolis force. On Earth, this force is responsible for the rotation of hurricanes and ocean currents. In the sun, which rotates on its axis approximately every 27 days, the Coriolis force acts on moving plasma, creating rotational flow patterns that span thousands of kilometers.

This rotating motion twists the solar plasma and magnetic fields into loops and spirals, contributing to the complexity of solar magnetic structures. These twisted structures can store vast amounts of energy, which, when released, drive solar storms and geomagnetic disturbances.

Understanding how the Coriolis force interacts with plasma currents deep beneath the sun’s surface is a crucial part of the broader effort to model solar magnetohydrodynamics — the behavior of electrically charged fluids in magnetic fields.

What Lies Beneath: A Deeper Mystery Awaits

Perhaps the most intriguing part of this study is what it hints at but does not fully explain — that something even deeper within the sun may be orchestrating the massive flows and magnetic cycles we observe at the surface.

As Ms. Anisha Sen, the lead author, put it, “The findings hint that something mysterious is lurking in deeper layers of the sun that truly drives its global dynamics.”

Could it be that the sun has an as-yet-undiscovered internal structure influencing its entire magnetic cycle? Is there a hidden solar dynamo deeper than the NSSL?

These are the questions that will likely drive solar physics research in the coming decades.

Looking Ahead: Toward a New Era in Space Weather Prediction

This breakthrough opens the door to a more comprehensive understanding of how internal solar flows relate to external solar activity. The more we understand about the sun’s internal behavior, the better we can forecast solar storms and protect Earth-based infrastructure.

With climate change and our increasing reliance on satellite technology, building resilient systems against space weather disruptions is more important than ever. This study is a major step toward that goal.

Key Takeaways

  • Plasma flows in the NSSL show inward movement at the surface and outward movement at deeper layers, forming massive circulation patterns.

  • These flows shift with the sun’s magnetic pulse, linking internal solar dynamics to surface magnetic activity.

  • The patterns are influenced by the Coriolis force, the same mechanism that spins hurricanes on Earth.

  • The study enhances our understanding of sunspot formation, solar cycles, and space weather forecasting.

  • Led by Indian scientists, this international collaboration puts India at the forefront of heliophysics research.

Conclusion

The sun, our life-giving star, remains a source of both wonder and danger. As we peel back the layers of its fiery depths, we uncover not only beautiful cosmic rhythms but also clues to phenomena that affect everything from satellite navigation to national power grids.

Thanks to the pioneering work of the Indian Institute of Astrophysics and its global partners, we are now one step closer to decoding the hidden language of the sun — a language written in plasma, magnetism, and the elegant physics of rotation. 

Popular posts from this blog

🇮🇳 Indian Astronaut Returns to Space After 41 Years: Shubhanshu Shukla Aboard Axiom-4 Mission to ISS

In a landmark moment for India's space ambitions, Indian astronaut Shubhanshu Shukla has blasted off to the International Space Station (ISS) as part of the Axiom-4 mission , marking the country's return to human spaceflight after a 41-year hiatus . This historic launch from NASA’s Kennedy Space Center in Florida has not only reignited national pride but also officially kickstarted India’s human spaceflight programme . The mission, operated by Axiom Space , includes a four-member international crew that will spend 14 days in orbit , conducting scientific research, outreach programs, and various commercial activities. This momentous occasion places India among a select group of nations capable of sending humans into space and reflects the growing prowess of the Indian space sector . A New Chapter: Shubhanshu Shukla and India’s Astronautical Comeback The last Indian to go to space was Rakesh Sharma in 1984, aboard the Soviet spacecraft Soyuz T-11. Now, in 2025, Shubhanshu...

IN-SPACe CANSAT & Model Rocketry India Student Competition 2024–25: A Giant Leap for Student Innovation

In a remarkable step towards strengthening India’s STEM education framework, the Astronautical Society of India (ASI), in collaboration with the Indian Space Research Organisation (ISRO) and the Indian National Space Promotion and Authorization Center (IN-SPACe), has launched the IN-SPACe CANSAT and Model Rocketry India Student Competition 2024–25 . This unique competition is crafted for undergraduate students across India, providing them with an opportunity to engage in experiential learning through the design, fabrication, and launch of CANSATs—can-sized satellites—using model rocketry platforms. The event held on June 14, 2025 , in Tamkuhi Raj, Kushinagar, Uttar Pradesh , was not a full-fledged rocket launch carrying an actual payload. Instead, it served as a critical site and systems validation test in preparation for the upcoming national student competition. This test focused on ensuring the readiness of launch site infrastructure, safety protocols, telemetry systems, and track...

A Deep Dive into ISRO’s Gaganyaan Mission

As the Indian Space Research Organisation (ISRO) advances steadily towards launching its maiden human spaceflight mission — Gaganyaan — the emphasis on spaceflight safety has never been more crucial. India is on the brink of joining an elite group of nations capable of sending humans to space, and ISRO is leaving no stone unturned to ensure that every stage of the mission, from liftoff to landing, adheres to global safety standards. Gaganyaan is poised to become a landmark achievement in India’s space exploration journey. It aims to send three astronauts into low Earth orbit (LEO) for up to seven days. While this initial mission is not intended to dock with any space station, the selected crew is being familiarized with docking procedures , a forward-thinking move that prepares them for potential future missions involving orbital rendezvous and space station docking . Ensuring astronaut safety is a complex, multilayered process involving extensive planning, rigorous testing, and ...

India’s Electric Hansa (E-HANSA): Pioneering Green Aviation with Indigenous Technology

India has embarked on a groundbreaking journey to revolutionize its aviation training sector with the development of the Electric Hansa (E-HANSA) —a next-generation, two-seater electric trainer aircraft developed indigenously by the Council of Scientific & Industrial Research – National Aerospace Laboratories (CSIR-NAL) in Bengaluru. Announced by Union Minister Dr. Jitendra Singh during a high-level monthly review meeting, this initiative places India firmly on the global map for sustainable and green aviation technologies . E-HANSA: A Leap Toward Green Aviation The E-HANSA aircraft is India's foray into electric aircraft development , aligning closely with national and global goals for carbon neutrality and clean energy adoption . As the world shifts towards climate-friendly technologies, the aviation industry—a traditionally high-emission sector—is witnessing a paradigm shift. The E-HANSA is expected to serve as a flagship electric trainer aircraft , integrating eco-friend...

The Evolution of the Computer Mouse: A Journey Through Innovation

The Evolution of the Computer Mouse: A Journey Through Innovation The computer mouse, a humble yet revolutionary input device, has undergone tremendous evolution since its inception. From bulky mechanical rollers to sleek, wireless, and AI-powered peripherals, the journey of the mouse reflects the rapid advancements in computing technology. In this article, we will explore the history, development, and future of the computer mouse while highlighting key innovations along the way. 1. The Birth of the Mouse (1960s) The first computer mouse was invented by Douglas Engelbart in 1964 at the Stanford Research Institute. It was made of wood and had a single button, with a system of wheels for detecting motion. The invention was demonstrated in 1968 in the famous "Mother of All Demos." Engelbart envisioned the mouse as part of a broader interactive computing system to enhance productivity. Key Features of Early Mice: Wooden casing Two metal wheels for movement A single button ...

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations

Climate Risk Index (CRI) 2025: India Among the Most Affected Nations Introduction to Climate Risk Index (CRI) The Climate Risk Index (CRI) 2025 is a globally recognized measure that ranks countries based on their vulnerability to extreme weather events over a defined period. This index assesses the impact of climate-related disasters such as floods, storms, heatwaves, and droughts. It serves as a critical indicator of how climate change affects human lives and economies across different regions. The CRI 2025 , published by German-watch , highlights India's growing vulnerability to climate-related disasters. India has been ranked as the 6th most affected country during 1993-2022 , highlighting the increasing frequency and severity of extreme weather events. Key Findings of CRI 2025 India's Climate Vulnerability India faced over 400 extreme weather events between 1993 and 2022 . The economic losses due to these disasters exceeded USD 180 billion . The death toll from climate-r...